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Abstract
Mobile health programs have gained a lot of popu-
larity recently due to the widespread use of mobile
phones, particularly in underserved communities.
However, call records from one such maternal
mHealth program in India indicate that different
beneficiaries have different time preferences, due
to their availability during the day as well as lim-
ited access to a phone. This makes selection of the
best time slot to call a beneficiary an important
problem for the program. Prior work has formal-
ized this as a collaborative bandit problem, where
the assumption of a low-rank call pickup matrix
allows for more efficient exploration across arms.
We propose a novel Bayesian solution to the col-
laborative bandit problem using Stochastic Gradi-
ent Langevin Dynamics (SGLD) and Thompson
Sampling for selection of time slots. We show
that this method is able to perform better in scarce
data situations where there are limited time steps
for exploration, and has the ability to utilize prior
knowledge about arms to its advantage. We also
propose a faster version of the algorithm using
alternative sampling which can potentially scale
to a very large number of users such that it may
be potentially deployable in the real world. We
evaluate the algorithm against existing methods
on simulated data inspired from real-world data.

1. Introduction
Maternal health is an important area of concern and for a
lot of developing countries reducing the maternal mortal-
ity rate is one of WHOs Sustainable Development Goals
(SDGs) (WHO). It is critical to provide timely and essential
information to pregnant women to address this. Mobile
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Figure 1: A beneficiary of the Kilkari program

health (mHealth) programs run by non-profit organizations
utilize the large scale availability of mobile phones to pro-
vide such critical information via automated voice calls on
mobile phones (kil). ARMMAN (arm) is one such NGO
based in India whose mission is to improve maternal and
child health outcomes for underserved communities in In-
dia. ARMMAN partners with the Ministry of Health and
Family Welfare in India to run the Kilkari program (kil)
which provides this information to the mothers through au-
tomated voice calls sent at different times throughout the
week. However, one challenge faced by the NGO is the
low pick-up rate of the beneficiaries when called, requiring
multiple retries (more than 6 on average). This is largely
due to the fact that different beneficiaries prefer to listen
to these calls at different time slots and on different days
due to practical constraints such as shared phones, different
working hours, household chores, and network reliability
(Mohan et al., 2021; Lalan et al., 2023). Thus, carefully
deciding on the time slots to call a beneficiary improves the
probability of pickup of a call and hence the effectiveness of
the program by reducing critical bandwidth currently spent
on retries. The NGO combats low pickup rates by calling
beneficiaries multiple times, and hence a more targeted ap-
proach should also help meet the bandwidth constraints of
the NGO. This becomes even more crucial as the goal of the
NGO is to scale operations to a nation-wide level eventually.

Finding the optimal time slots for each beneficiary can be
done by formulating the pick-up problem in terms of a
multi-agent multi-arm bandit problem by considering users
as agents and time slots as arms. A simple multi-arm bandit
solution requires exploration over the time slots for each
beneficiary. (Pal et al., 2024) utilizes collaborative bandits
to jointly learn preferences for each user assuming that the
time slot preference matrix is low-rank and uses matrix fac-
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Figure 2: Illustration showing the pick-up matrix for 4 users and
5 time slots, which can be decomposed into 2 matrices assuming
2 implicit user types. Each user is some combination of the two
types, and each user type has some preference across time slots.

torization to obtain an estimate for the preferences. Further,
Boltzmann exploration (Cesa-Bianchi et al., 2017) is used to
ensure that these preferences converge to optimal over time.
The low-rank assumption is valid due to the fact that groups
of users show similar preferences. Figure 2 shows a simple
example of the low-rank pick-up problem. However, there
were a few fundamental problems with the method used to
tackle the problem. Since the method uses matrix comple-
tion, a large number of samples are required for a new arm
to be effectively optimized. Also, in the presence of prior
information, the number of samples can be significantly
reduced, which this method has no provision to leverage.

We introduce a Bayesian formulation of the problem which
alleviates the previously mentioned issues. Bayesian ap-
proaches (Bharadiya, 2023) allow the use of information
present in priors to quickly provide an estimate even in un-
seen scenarios such as newly introduced arms, as well as sce-
narios where there is very little data. The latter is especially
important due to the fact that in most practical settings, such
as the maternal health application, there is very limited time
to explore and then exploit (and thus a finite horizon). This
is because if we do not act soon enough we risk beneficiaries
getting dropped off from the program. Bayesian methods
also allows the use of Thompson Sampling (Thompson,
1933) which is shown (Nakajima & Sugiyama, 2011) to be a
very effective method and can provide much tighter bounds
than the previously attempted Boltzmann exploration.

We show that in low-data settings, the Bayesian method
outperforms (Pal et al., 2024), despite completely uninfor-
mative priors. We also propose a scalable solution with
alternative sampling of user and time slot matrices. Gains
are measured in terms of cumulative regret over not picking
the best arm for each beneficiary as well as reduction in the
number of required calls. We intend to evaluate this work in
a real world field study in collaboration with the non-profit
ARMMAN, for potential deployment in Kilkari.

2. Related Work
AI in Maternal Healthcare Limited resource allocation
problems in maternal healthcare have previously been

solved by restless multi-arm bandits (Mate et al., 2022; Nair
et al., 2022; Verma et al., 2023). The time slot selection
problem using collaborative bandits was previously studied
by (Pal et al., 2024).

Multi-armed Bandits Multi-armed bandits are a highly
studied and effective method for solving several resource
allocation problems. Several methods such as phased elimi-
nation (Lattimore & Szepesvári, 2020; Slivkins et al., 2019),
UCB (Auer et al., 2002), Thompson Sampling (Thompson,
1933; Agrawal & Goyal, 2012) and Best-arm Identification
(Agrawal et al., 2020; Garivier & Kaufmann, 2016) have
been studied in detail.

Collaborative Bandits Collaborative Bandits have gar-
nered recent attention due to the widespread popularity of
modern recommender systems (Bresler et al., 2016; Dad-
khahi & Negahban, 2018). While several algorithms with
strong bounds under special conditions have been proposed
(Pal et al., 2023; Jain & Pal, 2022), (Pal et al., 2024) pro-
posed an algorithm which works in approximate low-rank
problems which is closer to our setting.

Bayesian Matrix Factorization While several methods
have been proposed for Bayesian matrix factorization (Naka-
jima & Sugiyama, 2011), the ones which utilize MCMC
(Salakhutdinov & Mnih, 2008) are of particular interest to
us. (Ahn et al., 2015) proposes utilizing SGLD in a dis-
tributed manner using block partitioning to perform matrix
factorization. While such methods have been applied in
practice (Zhang et al., 2020; Li et al., 2016), none of these
methods extend the solution in a bandit setting that forms
our focus.

3. Problem Formulation
The problem of pickup in Kilkari can be characterized by
the use of a pickup matrix M ∈ Ru,t where element mi,j

represents the probability of user i picking up the call when
they are called at time slot j. u and t represent the number
of users and time slots respectively.

The pickup matrix can be assumed to be low-rank because
of similarity of pickup patterns across beneficiaries (Pal
et al., 2024; Bresler et al., 2016). Our low rank models
assumes that each of the users belongs to a simplex of k
archetypes, while each archetype has a pattern of pickup
across the different time slots (e.g. those with a shared
phone may prefer morning and evening slots). Thus, we
want to decompose matrix M into U ∈ Ru,k and R ∈ Rk,t,
M = UR, where U of dimension u×k andR of dimension
k × t represent user to type matching and type to reward
matching respectively. Each row of U is a valid probability
mass function over the support [k]. Each entry of R is a
scalar probability of pickup in [0, 1].

The input data is provided as X , where Xi refers to the
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ith data point. In general Xi = (ui, ti, pi) ∈ [1, · · ·u] ×
[1, · · · t] × {0, 1}, which represents if the call was picked
up or not (pi) by user ui at time slot tj . N is the number of
data points in total and n is the batch size.

3.1. Matrix Completion with Boltzmann Exploration

Prior work (Pal et al., 2024) utilizes matrix factorization
(MF) using a nuclear norm optimization method. Given
the data X , a matrix D is created with the estimated prob-
abilities from the observed data. MF is run on D to get a
completed matrix M ′.

minM ′

∑
{i,j}∈D

(
Di,j −M ′i,j

)
+ λ||M ′||∗

M ′ estimates the original matrix M , following which, ex-
ploration is done by using Boltzmann exploration (Cesa-
Bianchi et al., 2017). While this method performs well in
comparison to UCB (Auer et al., 2002) on each individual
arm, there is much scope for improvement, such as utiliza-
tion of priors, and performance in scarce data scenarios.

4. Bayesian Collaborative Bandits
4.1. Bayesian Matrix Factorization
A Bayesian method on the contrary can perform well given
prior information, or in low data settings. We aim to model
the matrix factorization as a bayesian optimization prob-
lem similar to (Ahn et al., 2015). Since we need a way to
compute the posterior distribution given the data, we use
Stochastic Gradient Langevin Dynamic (SGLD) (Welling &
Teh, 2011) which allows us to compute updates to the pa-
rameters in batches of data as computing parameter updates
with the entire dataset is very compute intensive. Another
advantage of using SGLD is that we can directly sample
from the posterior using SGLD, which is later used along
with Thompson sampling as a method to pick time slots to
call for a given user. The general SGLD update looks like:

∆Θ =
ε

2
(∇ log p(Θ) +

N

n
Σni=1∇ log p(Xi|Θ)) + η

η ∼ N(0, ε)
(1)

where, Θ are the parameters that characterize the likelihood
function of X (observed data). p(Θ) is the Bayesian prior
over these parameters. In our case, we assume that element
Uu,k′ is filled with values e

θ
u,k′∑

k(eθu,k )
and each element Rk,t

is filled with 1
1+erk,t

. Here, θu,k and rk,t are the parameters
are sampled from independent priors each of which is an
exponential distribution with pre-decided parameters λu,k
and αk,t respectively. Note that, Θ = {θu,k} ∪ {rk,t}.

In our setting the prior p(Θ) from Equation (1) is:

p(Θ) = p(θ, r) =
(
Πu,kλu,ke

λu,kθu,k
)

(Πk,tαk,te
αk,trk,t)

(2)

Coordinates of the gradient∇Θ log p(Θ) are given by:

∇θu,k log p(θ, r) = λu,k, ∇rk,t log p(θ, r) = αk,t (3)

The likelihood (second) term of Equation (1) involves the
observed reward xu,t which is a mixture of Bernoulli ran-
dom variables and is calculated as

P = p(xu,t|θ, r) = Σk (p(k|θu)p(xu,t|k, rt))

p(k|θ) =
eθuk

Σjeθuj

p(xu,t|k, rt) =
xu,te

rk,t

(1 + erk,t)
+

(1− xu,t)
(1 + erk,t)

(4)

Here, p(k|θ) and p(xu,t|k, rt) represent the probability of
sampling archetype k given the user parameters and the
Bernoulli likelihood of observing a Boolean variable xu,t
given the archetype k and the reward parameters. Coordi-
nates of∇Θ log p(xu,t|Θ) are given by:

∇θu,k log p(xu,t|θ, r)

=
1

P
(δθu,k(Uu,k)) · p(xu,t|k, rt)

(5)

∇rk,t log p(xu,t|θ, r) =
1

P

eθu,k

Σjeθu,j
(2xu,t − 1)erk,t

(1 + erk,t)2
(6)

4.2. Thompson Sampling

While there are several solution paradigms for regret mini-
mization in multi-arm bandit problems such as UCB, Phased
Elimination, Thompson Sampling (TS) (Thompson, 1933;
Nakajima & Sugiyama, 2011) is a popular method known
for its simplicity and excellent empirical performance in
several applications. Further, being applicable in Bayesian
settings, TS is a popular method when prior information
is available. TS works by choosing a sample of reward
parameters from the posterior distribution, pulling the best
arm and then evolving the belief according to the new data
received. The most difficult part of the process is to sample
from the posterior distribution in complex scenarios. In
the limit, Markov Chain Monte Carlo (MCMC) methods
(Andrieu & Thoms, 2008) such as SGLD converge to the
posterior distribution, which allows us to directly sample
from the converged SGLD matrices. Once we sample a row
of the reward matrixMu,: in our context, we choose the best
time slot for each user.

4.3. Scaling with Alternating Sampling

While we see that this works well in the experiments Fig-
ure 3, we realize that SGLD does not scale very well in
practice to cases where the number of users is very large.
This is not desirable as Kilkari program should potentially
scale to millions of beneficiaries. We thus come up with a
scalable formulation of the algorithm which can be further
optimized via a distributed computation.
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Number of examples Bayesian MF Data Matrix Matrix Completion
Error Error Fraction Error Error Fraction Error Error Fraction

500 14.7 0.27 52.807 0.991 49.127 0.922
5000 12.69 0.215 47.72 0.812 30.71 0.522

40000 7.24 0.13 27.61 0.51 23.82 0.441
400000 5.67 0.12 7.77 0.16 5.05 0.1

Table 1: Comparison of error of Bayesian matrix factorization on a 500× 20 matrix with 4 types, compared to (1) The data matrix D as
described in Section 3.1 (2) Completed matrix using matrix completion M ′. The error E is measured as Frobenius norm of the difference
with the original matrix M , and the fractional error is the error in ratio of the Frobenius norm of M , ie. E

||M||F

4.3.1. CONDITIONAL INDEPENDENCE OF UPDATES

We want to establish that updates of the conditional posterior
of the parameters of the ith user is independent of the param-
eters of the other users and the reward parameter r given
data X . Since the update Equation (1) is a decomposition
of the term P (θ|X), it is sufficient to show the following.

Theorem 4.1. The updates in parameters for one user are
independent from the other users.

P (θu|r, θu′ 6=u, X) = P (θu|r,X) (7)

The proof is provided in Appendix A

4.3.2. PARALLELIZATION ACCROSS BATCHES OF USERS

Theorem 4.1 enables us to perform updates in θ in blocks of
users, accumulate updated parameters and then perform the
updates on r. This type of alternation is different from (Ahn
et al., 2015) as it does not involve a complicated breakdown
and recombination of the original matrix into blocks. The
complete algorithms are given in Appendix B.

5. Experiments
We conduct experiments comparing raw matrix factoriza-
tion, regrets on the bandit problem and in terms of the re-
quired number of retries (in Appendix C.2).

5.1. Matrix Factorization

Appendix C.1 describes the process of data generation
and metrics for comparison in detail. Table 1 shows that
Bayesian MF performs the best in low data setting and con-
tinues to do so until a very large number of samples are
available, beyond which non-Bayesian MF is able to per-
form similarly. It must be noted that the priors provided to
the method are mostly uninformative as they are set as 0.5
for each value indicating that the values are from a prob-
ability distribution. In the presence of informative priors,
Bayesian factorization should require even lesser examples
to reach the same loss.

5.2. Bandit Regrets

We show the cumulative regret on up to 1000 users on a
randomly generated pickup matrix in Figure 3. Regret is
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Figure 3: Cumulative regret on logarithmic scale for the different
methods averaged over 5 random matrices. Results are on a 1000×
20 matrix with 4 types. Every time step adds 1000 samples.

calculated per batch of 1000 users and is calculated as the
mean difference between the best arm probability and the
probability of pickup in the chosen arm. We compare against
non Bayesian matrix completion (Pal et al., 2024) and UCB
for each arm (Auer et al., 2002). UCB performs worse than
all the methods because it cannot leverage the collaborative
structure of the problem. Our proposed bayesian method
does very well and is able to start minimizing regret very
quickly. The alternating sampling version, performs slightly
worse than the direct sampling method, but is still able
to outperform other methods by about 80% in terms of
regret. We hypothesize that this is because joint sampling
of U and R probably leads to a direct convergence to the
posterior and the alternating sampling leads to a noisy path
to convergence.

6. Conclusion and Future Directions
In this work, we show a significant improvement over the
SOTA in terms of cumulative regret and pickup rates. We
also propose an alternating method to scale better. We have
shown that prior information can be incorporated in the
problem, we intent to formalize this further in future work.
We also aim to come up with theoretical regret bounds for
Bayesian matrix factorization as well as convergence bounds
for the alternative sampling method.
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Impact Statement
The results shown in the paper are obtained in simulation.
This will however be followed by a thorough evaluation
through a field study, as for past works (Verma et al., 2023),
to evaluate its effectiveness in the real world before deploy-
ment. Simulations show potential for saving a large number
of calls compared to the current methodology used by the
NGO, which means more effective utilization of bandwidth
as well as potential to potentially enroll more beneficiaries.
We rely on the expertise of our partner NGO to achieve
these goals, and would like to acknowledge and thank our
collaborators at ARMMAN.
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A. Conditional independence of Updates
Theorem A.1. The updates in parameters for one user are
independent from the other users.

P (θi|r, θj 6=i, X) = P (θi|r,X) (8)

Proof. Let X be the data, θ and r be the user and reward
matrix random variables. The likelihood function is:

L(X, θ, r) =

N∏
i=1

(
(1−Xi(u,t))(1− θurt)

+(Xi(u,t)θurt)
) (9)

where θu is the uth row of θ and rt is the rth column of r.

We want to establish that the updates of the conditional
posterior of the parameters of the ith user is independent of
the parameters of the other users.

P (θi|r, θj 6=i, X) =
L(θi, r, θj 6=i, X)p(θi)∫
L(θi, r, θj 6=i, X)p(θi)dθ

(10)

We can separate out the items in X where user i is involved.

L(θi, r, θj 6=i, X) = L(θ, r,X) (11)

=

N∏
i=1

(
(1−Xi(u,t))(1− θurt) + (Xi(u,t)θurt)

)
(12)

=
∏

((1−Xi)(1− θirt) + (Xiθirt)) (13)∏
((1−Xj 6=i)(1− θj 6=irt) + (Xj 6=iθj 6=irt))

(14)

The second term in the product comes out in both numerator
and denominator (as it is not dependent on θi) and cancels
out. Thus we are left with

P (θi|r, θj 6=i, X) =
L(θi, r,Xi)p(θi)∫
L(θi, r,Xi)p(θi)dθ

(15)

= P (θi|r,Xi) (16)

Where Xi is the data where i is involved.

B. Algorithms
Algorithm 1 and Algorithm 2 explain the full and alternat-
ing sampling SGLD methods. The complete algorithm is
decribed by Algorithm 3.

Algorithm 1 SGLD with Full Sampling

Input: Batch Size n, Data X
Hyperparameters: Learning Rate ε
Parameters: λ, α
Initialize θ and r (from Section 4.1)
repeat

Select batch x of size n from X .
Calculate terms from Equation (5) and Equation (6)
Update θ, r using Equation (1).

until θ, r converge
Return θ, r =0

Algorithm 2 SGLD with Alternating Sampling

Input: Batch Size n, Data X , User Blocks b
Hyperparameters: Learning Rate ε
Parameters: λ, α
Initialize θ and r (from Section 4.1)
repeat

Select batch x of size n from X .
for bi in b do

Calculate terms from Equation (5) for bi
Update θbi using Equation (1).

end for
Merge θbi to get θ.
Calculate terms from Equation (6)
Update r using Equation (1).

until θ, r converge
Return θ, r =0

C. Experiments
C.1. Data Generation

We test the matrix completion on randomly generated low
rank matrices to analyze the performance of Bayesian ma-
trix factorization using SGLD. A random matrix of size
u× d with rank k is generated by multiplying two random
matrices G and H of shape u × k and k × d respectively
and adding a small amount of Gaussian noise to it. This is
followed by a normalization step which scales the values to
probabilities between [0, 1].

M = normalize(G ·H +N(µ, σ2))

The random matrices are randomly generated with each
element being from the range [0, 1] and µ and σ are chosen
to be 0.5 and 0.1 respectively. The normalize operation is

7
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Algorithm 3 Proposed Algorithm

Input: Time steps T , Samples per time step s.
Generate data X0 from random users and time slots.
for i = 1 to T do

if Sampling Method == full then
θ, r from Algorithm 1

else if Sampling Method = alternating then
θ, r from Algorithm 2

end if
Calculate U,R ( Section 4.1).
Generate Xi with s samples using TS (Section 4.2).

end for
Return U , R =0
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Figure 4: Average number of attempts required to connect to 1000
callers.

a scaling operation which maps the smallest and highest
values to 0 and 1 and scales the other values accordingly.
The value of k chosen is 4. This data is used in Section 5
for all experiments.

We compare the results with matrix completion using nu-
clear norm from (Pal et al., 2024). The criterion used for
comparison is the Frobenius norm ||M ||F of the matrix
from the original pick-up matrix.

C.2. Estimating Call Pickup Rates

We also measure expected number of attempts to reach a
beneficiary for the different algorithms. The analysis shows
that the proposed Bayesian method reduces the number of
total calls required by 14% from the matrix completion
method, by 47% from the UCB baseline and by about 81%
from the current calling system employed by the algorithm.
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